Search results for "Product space"
showing 10 items of 24 documents
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
2014
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that
2016
Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure generated by unbounded metric operators in a Hilbert space. To that effect, we consider the notions of similarity and quasi-similarity between operators and explore to what extent they preserve spectral properties. Then we study quasi-Hermitian operators, bounded or not, that is, operators that are quasi-similar to their adjoint and we discuss their application in pseudo-Hermitian quantum mechanics. Finally, we extend the analysis to operators in a partial inner product space (pip-space), in particular the scale of Hilbert space s generated by a single unbounded metric operator.
Sets of Efficiency in a Normed Space and Inner Product
1987
In a normed space X the distances to the points of a given set A being considered as the objective functions of a multicriteria optimization problem, we define four sets of efficiency (efficient, strictly efficient, weakly efficient and properly efficient points). Instead of studying properties of the sets of efficiency according to properties of the norm, we investigate an inverse problem: deduce properties of the norm of X from properties of the sets of efficiency, valid for every finite subset A of X.
Corrigendum: Partial inner product spaces, metric operators and generalized hermiticity
2013
n/a
On product of p-sequential spaces
2016
Abstract The product of finitely many regular p-compact p-sequential spaces is p-compact p-sequential for any free ultrafilter p as it follows from [5] . In the paper is produced an example of a Hausdorff p-compact p-sequential space whose square is not p-sequential. It is also given an example of a space which is sP-radial, wP-radial, vwP-radial for any P ⊂ μ ( τ ) but its square is neither sP-radial nor wP-radial nor vwP-radial space.
Linear extension operators on products of compact spaces
2003
Abstract Let X and Y be the Alexandroff compactifications of the locally compact spaces X and Y , respectively. Denote by Σ( X × Y ) the space of all linear extension operators from C(( X × Y )⧹(X×Y)) to C(( X × Y )) . We prove that X and Y are σ -compact spaces if and only if there exists a T∈Σ( X × Y ) with ‖ T ‖ Γ∈Σ( X × Y ) with ‖ Γ ‖=1. Assuming the existence of a T∈Σ( X × Y ) with ‖ T ‖ X and Y is equivalent to the fact that ‖ Γ ‖⩾2 for every Γ∈Σ( X × Y ) .
The Ptolemy and Zbăganu constants of normed spaces
2010
Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…
The Partial Inner Product Space Method: A Quick Overview
2010
Many families of function spaces play a central role in analysis, in particular, in signal processing (e.g., wavelet or Gabor analysis). Typical are spaces, Besov spaces, amalgam spaces, or modulation spaces. In all these cases, the parameter indexing the family measures the behavior (regularity, decay properties) of particular functions or operators. It turns out that all these space families are, or contain, scales or lattices of Banach spaces, which are special cases ofpartial inner product spaces(PIP-spaces). In this context, it is often said that such families should be taken as a whole and operators, bases, and frames on them should be defined globally, for the whole family, instead o…
Banach partial *-algebras: an overview
2019
A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.